CLEARING UP THE LANGUAGE OF RETINAL IMAGING

Putting the International Widefield Imaging Study Group findings into context. Page 23

Personalized medicine and retinoblastoma treatment – page 14

Never use two steps when one will do – page 13

Also Inside

Retinal imaging and neurodegenerative disease – page 28
IOP and anti-VEGF drugs: What we know so far – page 33
Five prime abstracts from AAO 2019 – page 36
Coding for surgery in the postop period – page 39
The suprachoroidal space provides a novel approach to drug delivery, offering new opportunities to access diseased tissue in the back of the eye.1

See the potential at SuprachoroidalSpace.com
Turning the tide on GA

Geographic atrophy remains the greatest unmet need in retina. The historical notion that GA progresses slowly was wrong and the concept has misled patients and their families. Numerous studies have confirmed patients afflicted with GA lose about one line of vision annually. At that rate, it doesn’t take many years before the ability to drive and other quality-of-life measures are irreversibly lost.

Fortunately, data from two recent Phase II clinical trials indicate the tide may be turning. First, inhibition of complement factor 3 (C3) with pegcetacoplan resulted in statistically significant reductions in GA growth, a directionality that appeared to increase with longer drug exposure and appeared to be dose dependent.1 Second and most recently, inhibition of C5 with avacincaptad pegol similarly resulted in statistically significant reductions in GA growth.2 Cumulatively, through one year, these datasets indicate that GA growth may be slowed by about one third with C3 or C5 inhibition.

Certainly these results must be verified through additional, larger studies, which are under way. The 2018 failure of lampalizumab in Phase III was particularly disappointing, and the shock waves have lingered in our field as there remains extensive speculation that targeting GA may be just too late in the disease process to prevent vision loss. While this may yet prove to be true, armed with these recent datasets and for the benefit of our patients, I believe and hope it is not.

My conversations with patients afflicted with GA have evolved from vague comments—“There is a lot of ongoing research”—to more specific details related to these Phase II trial results.

The advent of anti-VEGF therapies for exudative diseases was the dawn of a new era. I believe we are on the edge of another leap forward with validation of complement as a viable target to slow GA progression.

Ultimately, we must pivot toward intervention at earlier stages of the disease process, such as phenotypically variable intermediate AMD, with the goal of preventing progression to late-stage AMD, including both the neovascular and GA forms; analogous to preventing progression of severe nonproliferative diabetic retinopathy to proliferative disease with pharmacotherapy.

But for now, a welcome first step toward conquering this devastating disease would be to slow the thus far inexorable march to blindness inherent in a diagnosis of GA. ☺

REFERENCES

FEATURES

Cover Focus

23
Clearing up the language of retinal Imaging
By Netan Choudhry, MD, FRCSC

ALSO INSIDE:

14
Personalized medicine and retinoblastoma treatment
Globe-saving therapies are minimizing the need for enucleation.
By Victor Villegas, MD, and Timothy G. Murray, MD, MBA, FACS

28
Retinal imaging and neurodegenerative disease
A review of retinal changes and potential biomarkers.
By Daniel J. Bennett, BA, Hadi Kaakour, MD, Alice Laughlin, BS, Fanny M. Elahi, MD, PhD, and Amir H. Kashani, MD, PhD

33
IOP and anti-VEGF drugs: What we know so far
Chronic changes may be dependent on the drug used.
By Lauren Burgett and Raj K. Maturi, MD

36
AAO 2019 report; First results on gene and cell therapies
Plus predictors of endophthalmitis, WF OCTA vs. FA and more.
By Ashkan M. Abbey, MD

DEPARTMENTS

3
Editor’s Page
Turning the tide on GA
By Charles C. Wykoff, MD, PhD

7
News
Where new anti-VEGF agent fits in the toolbox; New thinking on RAO, stroke

10
Retina Rounds
Melanoma? Or pseudomelanoma?
Edited by Lisa C. Olmos de Koo, MD, MBA

13
Surgical Pearl Video
Never use two steps when one will do
Edited by Paul Hahn, MD

39
Coding Commentary
Coding for surgery in the postop period
By Ellen R. Adams, MBA

41
Clinical Trial Closeup
Potential of KSI-301 to extend treatment
Edited by Emmett T. Cunningham Jr., MD, PhD
INDICATIONS
LUCENTIS® (ranibizumab injection) is indicated for the treatment of patients with:
• Diabetic retinopathy (DR)
• Diabetic macular edema (DME)

IMPORTANT SAFETY INFORMATION
CONTRAINDICATIONS
• LUCENTIS is contraindicated in patients with ocular or periocular infections or known hypersensitivity to ranibizumab or any of the excipients in LUCENTIS. Hypersensitivity reactions may manifest as severe intraocular inflammation.

WARNINGS AND PRECAUTIONS
• Intravitreal injections, including those with LUCENTIS, have been associated with endophthalmitis, retinal detachment, and iatrogenic traumatic cataract. Proper aseptic injection technique should always be utilized when administering LUCENTIS. Patients should be monitored following the injection to permit early treatment, should an infection occur.
• Increases in intraocular pressure (IOP) have been noted both pre-injection and post-injection (at 60 minutes) with LUCENTIS. Monitor intraocular pressure prior to and following intravitreal injection with LUCENTIS and manage appropriately.
• Although there was a low rate of arterial thromboembolic events (ATEs) observed in the LUCENTIS clinical trials, there is a potential risk of ATEs following intravitreal use of VEGF inhibitors. ATEs are defined as nonfatal stroke, nonfatal myocardial infarction, or vascular death (including deaths of unknown cause).
• In a pooled analysis of Studies DME-1 and DME-2, the ATE rate at 2 years was 7.2% (18 of 250) with 0.5 mg LUCENTIS, 5.6% (14 of 250) with 0.3 mg LUCENTIS, and 5.2% (13 of 250) with control. The stroke rate at 2 years was 3.2% (8 of 250) with 0.5 mg LUCENTIS, 1.2% (3 of 250) with 0.3 mg LUCENTIS, and 1.6% (4 of 250) with control. At 3 years, the ATE rate was 10.4% (26 of 249) with 0.5 mg LUCENTIS and 10.8% (27 of 250) with 0.3 mg LUCENTIS. The stroke rate was 4.8% (12 of 249) with 0.5 mg LUCENTIS and 2.0% (5 of 250) with 0.3 mg LUCENTIS.
• Fatal events occurred more frequently in patients with DME and DR at baseline treated monthly with LUCENTIS compared with control. A pooled analysis of Studies D-1 and D-2, showed that fatalities in the first 2 years occurred in 4.4% (11 of 250) of patients treated with 0.5 mg LUCENTIS, in 2.8% (7 of 250) of patients treated with 0.3 mg LUCENTIS, and in 1.2% (3 of 250) of control patients. Over 3 years, fatalities occurred in 6.4% (16 of 249) of patients treated with 0.5 mg LUCENTIS and in 4.4% (11 of 250) of patients treated with 0.3 mg LUCENTIS. Although the rate of fatal events was low and included causes of death typical of patients with advanced diabetic complications, a potential relationship between these events and intravitreal use of VEGF inhibitors cannot be excluded.

0.3 MG LUCENTIS PREFILLED SYRINGE
REGRESSION DELIVERED
HELP PATIENTS TURN BACK TO AN EARLIER STAGE OF DIABETIC RETINOPATHY (DR)

The efficacy and safety of LUCENTIS in DR, studied in 3 clinical trials, available in a sterile glass prefilled syringe.

ADVERSE EVENTS
• Serious adverse events related to the injection procedure that occurred in <0.1% of intravitreal injections included endophthalmitis, rhegmatogenous retinal detachment, and iatrogenic traumatic cataract.
• In the LUCENTIS Phase III clinical trials, the most common ocular side effects included conjunctival hemorrhage, eye pain, vitreous floaters, and increased intraocular pressure. The most common non-ocular side effects included nasopharyngitis, anemia, nausea, and cough.
• As with all therapeutic proteins, there is the potential for an immune response in patients treated with LUCENTIS. The clinical significance of immunoreactivity to LUCENTIS is unclear at this time.

Please see Brief Summary of LUCENTIS full Prescribing Information on following page.

*The following clinical trials were conducted for the DR & DME indications:
RISE & RIDE—Two methodologically identical, randomized, double-masked, sham injection–controlled, Phase III pivotal trials (N=759) that studied the efficacy and safety of LUCENTIS 0.3 mg and 0.5 mg administered monthly to patients with DR and DME at baseline. The primary outcome was the proportion of patients gaining ≥15 letters at 2 years. Protocol S—A randomized, active-controlled study that evaluated LUCENTIS 0.5 mg vs panretinal photocoagulation in DR patients with and without DME. All eyes in the LUCENTIS group (n=191) received a baseline 0.5 mg intravitreal injection followed by 3 monthly injections. Further treatments were guided by prespecified retreatment criteria. FDA approval was based on an analysis of the LUCENTIS arm of Protocol S. The primary outcome was mean change in visual acuity from baseline to 2 years.2,3

LUCENTIS 0.3 mg is recommended to be administered by intravitreal injection once a month (approximately 28 days).3

DME, diabetic macular edema.

5.6 Clinical Studies Experience
Because clinical trial data are presented under widely varying conditions, adverse reaction rates observed in clinical trials of a drug cannot be directly compared with rates in other clinical trials conducted by different investigators or in different settings. The incidence of adverse reactions in clinical trials may not reflect the incidence observed in practice, because patients treated in clinical trials may be selected for treatment with the drug and may not be representative of real-world patients. The potential for drug interactions may also have not been evaluated in clinical trials.

6.2 Clinical Studies Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in clinical trials of a drug cannot be directly compared with rates in other clinical trials conducted by different investigators or in different settings. The incidence of adverse reactions in clinical trials may not reflect the incidence observed in practice, because patients treated in clinical trials may be selected for treatment with the drug and may not be representative of real-world patients. The potential for drug interactions may also have not been evaluated in clinical trials.

6.3 Immunogenicity
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in clinical trials of a drug cannot be directly compared with rates in other clinical trials conducted by different investigators or in different settings. The incidence of adverse reactions in clinical trials may not reflect the incidence observed in practice, because patients treated in clinical trials may be selected for treatment with the drug and may not be representative of real-world patients. The potential for drug interactions may also have not been evaluated in clinical trials.

6.4 Postmarketing Experience
The following adverse reaction has been identified during postapproval use of LUCENTIS. Because this reaction was reported voluntarily from a population of uncertain size, it is not possible to reliably estimate its frequency or establish a causal relationship to drug exposure.

6.5 Pregnancy
Menstrual bleeding disorders

7.7 Dryness

8.5 USE IN SPECIFIC POPULATIONS
8.1 Pregnancy

In a pooled analysis of Studies D-1 and D-2 combined group of patients treated with 0.5 mg or 0.3 mg LUCENTIS compared with 1.1% (9 of 841) in patients treated with LU

LUCENTIS is contraindicated in patients with uveitis or periocular infections.

2.1 Indicators of Hypermobility

3.1 Thromboembolic Events

1.1 Ocular or Periocular Infections

The data below reflect exposure to 0.3 mg LUCENTIS in 440 patients with neovascular AMD in Studies A-1, AMD-2, and AMD-3. In 259 patients with neovascular AMD, the incidence of ocular adverse reactions was more frequent in patients treated with 0.3 mg LUCENTIS than in patients treated with 0.1 mg LUCENTIS in Study D-1 (see Table 14 in the full prescribing information).

5.4 CONTRAINDICATIONS

In a pooled analysis of Studies D-1 and D-2 combined group of patients treated with 0.5 mg or 0.3 mg LUCENTIS compared with 1.1% (9 of 841) in patients treated with LU

1.1 Neovascular (Wet-Related) Macular Degeneration (AMD)

1.2 Macular Edema Following Retinal Vein Occlusion (RVO)

1.2 Macular Edema Following Retinal Vein Occlusion

The incidence of arterial thromboembolic events (ATEs) in the LUCENTIS clinical trials, there is a potential risk of ATEs following treatment with LUCENTIS. ATEs are defined as arterial thromboembolic, myocardial infarction, or vascular death (including deaths of unknown cause).

Thromboembolic Events

Ocular or periocular infections

LUCENTIS is contraindicated in patients with uveitis or periocular infections.

Patients should be monitored following the injection to permit early treatment should there be an acute (see Ophthalmic Administration and Ophthalmic Management in 17.2 or in the full prescribing information and Patient Counseling Information (17.3).
Where the newest anti-VEGF agent fits in the exudative-disease toolbox

The long-anticipated regulatory approval of Beovu (brolucizumab, Novartis) gives retina specialists the first new anti-VEGF agent for age-related macular degeneration since the approval of Eylea (afiblercept, Regeneron Pharmaceuticals) eight years ago, and the first patients likely to get the new treatment are those with persistent fluid on optical coherence tomography after monthly treatment with the previously approved agents, an investigator of the Phase III trial tells Retina Specialist Magazine.

Beovu 6 mg is approved for every eight-to-12-week dosing after three monthly loading doses in neovascular AMD. At a wholesale cost of $1,850 per vial, which matches Eylea’s per-vial price, the first year cost of Beovu would be $11,100 for 12-week treatment and $13,875 for eight-week treatment. For each year thereafter, cost would be $7,400 and $11,100 for 12- and eight-week regimens. In the HAWK and HARRIER trials, more than half of patients on Beovu were on the 12-week dosing interval after a year. By comparison, Eylea 2 mg is approved for every four-to-eight-week dosing in nAMD after three monthly loading doses, which equates to a yearly cost of $22,200 to $13,875.

“We chose to price it comparably with other anti-VEGF drugs indicated for wet AMD,” says Patrick Mooney, vice president and head of Novartis’ U.S. ophthalmology franchise. “Our strategy is to remove nonclinical barriers for payers and for physicians, and we wanted the clinical profile of the drug to stand on its own.”

Arshad Khanani, MD, MA, of Reno, Nevada, a HAWK investigator, has treated multiple patients with Beovu post-approval. He says initially he used Beovu in patients with persistent subretinal or intraretinal fluid after monthly treatment with Eylea.

OCT results so far have been encouraging, he says. “If there’s no subretinal fluid on OCT after a month, I’m going to try to extend the patient out to six weeks with the next Beovu injection,” he says. He notes that Beovu is also suitable for treatment-naïve patients.

“I think the majority of physicians who don’t have the experience with Beovu are likely to use it initially on previously treated patients with persistent subretinal or intraretinal fluid on four-to-five-week treatment with Eylea,” Dr. Khanani says.

He notes the HAWK and HARRIER trials reported that Beovu was more effective than Eylea at resolving subretinal and/or intraretinal fluid as well as subretinal pigment epithelium fluid. “Once they see the efficacy in terms of drying the retina and that they can actually increase the interval between treatments, then they’re going to start using Beovu more in treatment-naïve patients,” he says.

At first some physicians may have been reluctant to use Beovu because it doesn’t have a J-code, but Novartis does have support programs to deal with coverage lapses, Dr. Khanani says. A permanent J-code has already been assigned by the Centers for Medicare and Medicaid Services and it will go in effect in January 2020.

REFERENCE
Oclusion of the retinal artery has been thought to be a predictor of stroke, but an analysis of patients with diagnosed retinal artery occlusion at the Cleveland Clinic has found that their risk of stroke is about the same as the general population.

“Subsequent hemispheric stroke is rare with or following retinal artery occlusion,” says David Laczynski, MD, a vascular surgeon at the Cleveland Clinic. He reported the results at the annual meeting of the Midwestern Vascular Surgery Society in Chicago. “We do caution that large database studies may be overestimating the risk of stroke after RAO,” he says, citing studies that have reported stroke rates of up to 20 percent at one year.1

The study evaluated 221 patients whose RAO was confirmed with fluorescein angiography from 2004 to 2018 at the Cleveland Clinic Cole Eye Institute.2 The study population is the largest series in RAO ever reported, he says.

The impetus of the study was to use the eye center to evaluate the institution’s experience with RAO, Dr. Laczynski says. “We were specifically concerned with looking at confirmed, symptomatic RAO with the risk of subsequent stroke,” he says. The study’s hypothesis was that RAO isn’t associated with an increased risk of stroke.

The average age of patients was 66 years. With a median follow-up of 2.2 years, the stroke rate was 2.3 percent (n=5), with four of the strokes occurring at the time of RAO and one at 1.2 years later. Only one stroke patient had greater than 50 percent stenosis of the carotid artery. The rate of stroke, death or myocardial infarction was 10 percent (n=22), Dr. Laczynski says. When concurrent ischemic events were excluded, the stroke rate was less than 1 percent.

“Sixty-three percent of patients (n=141) had carotid imaging, but only 14.2 percent (n=20) had more than 50 percent stenosis of the carotid artery,” Dr. Laczynski says. “Ten patients had carotid intervention.”

Among study limitations Dr. Laczynski points out were its single-center, retrospective nature and that not all patients had carotid artery imaging. “We cannot make any conclusion in regard to RAO and carotid artery disease,” Dr. Laczynski says.

REFERENCES

Quotable
The rate of stroke, death or myocardial infarction was 10 percent. When concurrent ischemic events were excluded, the stroke rate was less than 1 percent.
Retina Specialist focuses on the latest advances in the diagnosis, medical management and surgical treatment of diseases of the retina, along with practical, real-world advice from leading clinicians and other experts on managing the successful retina practice.

Keep up with cutting-edge science in retina.

Watch for issues in:

- **JANUARY**
- **MARCH**
- **MAY**
- **JULY**
- **SEPTEMBER**
- **NOVEMBER**

For inquiries contact

RETINASPECIALIST@JOBSON.COM

Advertising opportunities

JIM HENNE • PUBLISHER • 610-492-1017 • JHENNE@JOBSON.COM
MICHELE BARRETT • 215-519-1414 • MBARRETT@JOBSON.COM
MICHAEL HOSTER • 610-492-1028 • MHOSTER@JOBSON.COM

www.retina-specialist.com
Melanoma? Or pseudomelanoma?

A 77-year-old male was referred to the ocular oncology service at the University of Washington Eye Institute by his primary care physician for evaluation of a choroidal lesion in his left eye found incidentally on imaging. An MRI brain scan, ordered for unrelated dysphagia, showed an ovoid hyperintense lesion in his left globe.

Examination and findings

The patient was last seen six years earlier by an ophthalmologist, who noted a choroidal nevus in the superonasal periphery of the left eye. The patient’s ocular history was notable for pseudophakia in both eyes, and his medical history was significant for hypertension and type 2 diabetes.

Upon evaluation at our clinic, visual acuity was 20/20 in both eyes. Intraocular pressures were normal, and pupils equal, round and reactive with no relative afferent pupillary defect. Extraocular motility was full, as were confrontational visual fields in both eyes. Slit-lamp examination was within normal limits with a posterior chamber intraocular lens in each eye.

The dilated fundus exam in the left eye was notable for a pigmented choroidal lesion in the superonasal periphery with central lipofuscin and associated subretinal fluid. On B-scan ultrasound, the lesion appeared as a dome-shaped mass with medium internal reflectivity, measuring 9 x 7.5 mm with a thickness of 3.4 mm.

Work-up and surgery

Lesion growth, lipofuscin and subretinal fluid were consistent with a diagnosis of choroidal melanoma due to malignant transformation of a choroidal nevus. CT-scan of the chest, abdomen, and pelvis didn’t show any evidence of visceral metastases or lymphadenopathy. The patient underwent an operation to have tantalum clips placed and had proton beam radiotherapy. During the surgery, a trans-vitreal choroidal fine-needle aspiration was obtained. Castle gene expression profile showed that the lesion was Class 1A, portending a 98 percent chance of metastasis-free survival at five years.

Six months after completing proton beam therapy, the patient returned with vision decreased to light perception in the
Dr. Olmos de Koo is an associate professor of ophthalmology and director of the retina fellowship program at the University of Washington in Seattle, where Dr. Stacey is an assistant professor of ophthalmology specializing in ocular oncology. Dr. Tsukikawa is an ophthalmology resident and Dr. Mustafi is a retina fellow.

left eye. Examination revealed no view to the posterior pole, and a dense vitreous hemorrhage precluded ophthalmoscopic examination of the melanoma, which was stable on B-scan. The vitreous hemorrhage was presumed to be due to radiation retinopathy and the patient was referred to the retina service for consideration of pars plana vitrectomy and pan-retinal photocoagulation.

A second elevated mass

The patient was taken to the operating room for pars plana vitrectomy. A large mass of dehemoglobinized vitreous hemorrhage was present in the central vitreous, which was cleared and shaved into the periphery for 360 degrees. The choroidal melanoma was identified as a large choroidal mass in the superonasal periphery abutting the optic nerve with shallow areas of subretinal fluid extending inferiorly and toward the nerve (Figure 1A).

Unexpectedly, we noted a second elevated choroidal mass inferiorly, spanning from 5 to 7 o’clock with a mottled brownish-yellowish appearance (Figure 1B). This was clinically diagnosed as peripheral exudative hemorrhagic chorioretinopathy (PEHCR). We applied a 360-degree endolaser peripheral panretinal photocoagulation to treat presumed radiation retinopathy, sparing the surfaces of the two mass lesions. At the conclusion of the case, we injected a 0.05 mL of intravitreal bevacizumab (Avastin, Genentech/Roche) to treat the presumed active choroidal neovascular membrane.

The PEHCR lesion was likely the source of the patient’s large vitreous hemorrhage. At his most recent visit at two months postoperatively, vision was 20/20 in both eyes. Color fundus photos and fundus autofluorescence of the left eye demonstrated the choroidal melanoma superonasally (Figure 2A and B) and the PEHCR lesion inferiorly (Figure 2C and D). B-scan ultrasound of
the two lesions showed a dome shaped choroidal mass superonasally at 10 o’clock with maximal height of 3.6 mm (Figure 3A), and a diffusely corrugated choroidal mass inferiorly at 6 o’clock with maximal height of 2.46 mm (Figure 3B).

Features of PEHCR

PEHCR is a retinal degenerative process featuring subretinal or subretinal pigment epithelium hemorrhage or exudation. These lesions were first reported in 1961, when Algernon Reese, MD, and Ira Jones, MD, described 34 cases of hematomas under the RPE, of which four cases were peripheral to the macular region.1 In 1980, William Annesley Jr., MD, characterized 32 lesions with blood in the subretinal or sub-RPE space, which he termed “peripheral exudative hemorrhagic chorioretinopathy.”2

PEHCR is often misinterpreted as an intraocular tumor, in particular choroidal melanoma. Jerry Shields, MD, and colleagues found that 1,739 (14 percent) of 12,000 patients who were referred for evaluation of presumed uveal melanoma actually proved to have a pseudomelanoma.3 In this series, PEHCR (13 percent) was second only to choroidal nevus (49 percent) as the leading category of pseudomelanomas.

In a subsequent study, Carol Shields, MD, and colleagues further investigated the features of PEHCR in 173 eyes of 146 patients referred with the diagnosis of choroidal melanoma.4 The mean patient age was 80 years, and most patients were Caucasian (99 percent) and female (67 percent). The lesions were bilateral in 31 percent.

Patients with PEHCR consistently have systemic hypertension. Dr. Carol Shields and colleagues reported 51 percent of patients in their series had hypertension.4 Dr. Annesley reported 44.4 percent of 27 patients had it,2 and a Swiss study reported 55 percent of 40 patients had hypertension.5

In the series by Dr. Carol Shields and colleagues, a high percentage of patients (42 percent) were asymptomatic, 37 percent had decreased vision and 20 percent had flashes/floaters.4 Thirty-six eyes (21 percent) had decreased visual acuity related to the PEHCR lesion, which was associated with the following presenting symptoms: vitreous hemorrhage in 24 eyes (14 percent); subretinal hemorrhage extending to the macula in eight eyes (5 percent); and subretinal fluid extending to the macula in four eyes (2 percent).

PEHCR lesions are found most commonly in the temporal quadrant, specifically in the inferotemporal quadrant and between the equator and the ora serrata.
Surgical maneuvers are akin to language and, like the Thomas Jefferson quote above, reminds us that succinct communication is always preferred. The same can be said for surgical procedures: Efficiency by means of eliminating redundancy is our manifesto, and here are two examples you can incorporate into your surgical cases right away.

Isolating rectus muscles

Whether you are looping muscles in preparation for placement of a scleral buckle or isolating rectus muscles for more advanced maneuvers like choroidal drainage, notice how I isolate the inferior rectus in the first video segment.

After I isolate the rectus muscle with a Green muscle hook and loop the muscle with a heavy silk suture, I slide the muscle hook backward and pull out the suture at the same time that I remove the muscle hook. This is very simple but speaks to constantly looking for opportunities to improve efficiency.

As the residents and fellows who work with me know, I’m obsessed with eliminating surgical redundancy. Never use two steps when one will do. Economical surgical maneuvers will dramatically improve your efficiency in the operating room.

Membrane peeling

Next, we apply the same theme where I use one instrument instead of two for membrane peeling. For epimacular membranes, I favor a pinch-and-peel technique. However, with proliferative membranes in the detached retina, pinch-and-peel is sometimes awkward due to the presence of subretinal fluid, corrugations and/or folds in detached retina.

As you see in the second part of the video, you can use end-grasping (internal limiting membrane-style) forceps in the closed position and use the closed end to abrade membranes to release them from detached retina. This provides you with an easy technique to elevate a membrane edge. You can then grasp and peel in the usual fashion.

Although I’m a fan of the Tano diamond dusted membrane scraper and the Alcon Finesse Flex Loop, both of which can be used to initiate membrane dissection, you can also do this with end-grasping forceps in the closed position. This aids membranectomy efficiency without the use of additional instruments.

Department Editor

Paul Hahn, MD, PhD

By

David R.P. Almeida, MD, MBA, PhD

DISCLOSURES

Dr. Hahn has no relevant disclosures.

Dr. Almeida disclosed relationships with Alcon, Allergan, Bayer, Genentech, Novartis and Regeneron Pharmaceuticals, and is cofounder and equity holder in Citrus Therapeutics.

Bios

Dr. Hahn is a vitreoretinal surgeon at NJ Retina in Teaneck, N.J.

Dr. Almeida is a vitreoretinal surgeon at Erie Retinal Surgery, Erie, Pa.

View the Video

Retinoblastoma continues to be the most common primary intraocular malignancy of childhood. However, enucleation continues to be the international gold standard of management. During the last 20 years, globe-salvaging therapies with chemoreduction and focal consolidation have significantly improved the morbidity associated with retinoblastoma (RB) therapy. Still, some developing countries with limited access to medical care continue to struggle with the high morbidity and mortality associated to the natural course of the disease.1,2 Today, novel treatments for advanced disease are actively being investigated to minimize the need of enucleation and limit the toxicities associated to therapy. This article reviews the most current clinical pearls in the management of retinoblastoma.

Retinoblastoma affects one in 15,000 to 20,000 live births.1 Early diagnosis is of critical importance because small tumors have the best prognosis. Leukocoria is the most common sign at initial presentation (Figure 1).1 However, small or peripheral tumors may not alter the red-reflex. Sensory strabismus is the second most common sign.2

Take-home points
- Transitioning to globe-salvaging therapies has been universally adopted with the focus remaining on decreased morbidity and mortality.
- Treatments for retinoblastoma are trending toward targeted primary therapy with selective intra-arterial and intravitreal chemotherapy.
- The classic three-drug systemic treatment—carboplatin, vincristine and etoposide—has been linked with significant morbidity and routinely requires multiple cycles.
- Intravitreal chemotherapy has shown promise as a treatment, but further studies are needed to better evaluate its long-term safety.

Figure 1. Child with germline RB1 mutation and bilateral retinoblastoma. Note the asymmetric red-reflex.

Personalized medicine and retinoblastoma treatment

Globe-salvaging therapies are minimizing the need for enucleation for the most common primary intraocular malignancy of childhood.

By Victor M. Villegas, MD, and Timothy G. Murray, MD, MBA, FACS

Bios
Dr. Villegas is with Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami; the department of ophthalmology at the University of Puerto Rico, San Juan; and the department of surgery at Ponce Health Sciences University, Ponce, Puerto Rico.

Dr. Murray is with Murray Ocular Oncology and Retina (MOOR), Miami.

DISCLOSURES:
Dr. Villegas and Murray have no relevant financial relationships to disclose.

Victor M. Villegas, MD
Timothy G. Murray, MD, MBA, FACS
Advanced during the last 10 years. A significant trend toward targeted primary therapy with selective intra-arterial and intravitreal chemotherapy is currently under way. Technological changes and strategies focus on local treatments due to decreased morbidity to patients and excellent tumor response. New treatments are providing new hope to patients, especially to those with the most severe disease.

Management of RB tumors requires a multidisciplinary approach that may include an oculomotor oncologist, pediatric oncologist, pediatric ophthalmologist, pediatrician, interventional radiologist and ocular pathologist. Individualized treatment, considering factors such as the International Classification (IC) of RB, laterality, location of tumors, age of patient, family history and prior treatment must be considered, although RB treatment is aimed at child survival. Globe salvage and preservation of vision are important secondary goals. Early diagnosis remains the most crucial step in decreasing morbidity and mortality.

Treatment of small tumors (Figure 2) may only require transpupillary thermotherapy. Laser treatments may be repeated monthly until complete tumor regression is documented. Close follow-up with patients is important to monitor for recurrence. If recurrence is detected, systemic or intra-arterial chemotherapies may be considered.

Chemotherapy and chemoreduction

The classic three-drug systemic treatment (carboplatin, vincristine and etoposide) has been associated with significant morbidity, and it routinely requires multiple cycles. Bone marrow suppression, ototoxicity, nephrotoxicity and risk of induction of secondary cancers have been reported. Controversy continues to surround the role of systemic chemotherapy in the prevention of trilateral RB. The combination of systemic and/or intra-arterial chemotherapy with focal ablative treatments has been shown to have better globe salvage rates than chemotherapy alone in both early and advanced RB.

A recent study on macular retinoblastoma outcomes showed that chemoreduction with transpupillary thermotherapy of both foveal and extrafoveal tumors achieve control in 83 percent of R-E group V tumors. All tumors less than R-E group V achieved 100-percent control. Despite ablative foveal laser treatment, 56 percent of eyes had better than 20/80 visual acuity.

Enucleation remains the standard treatment of group E RB tumors. Histopathologic analysis may determine if adjuvant treatment is necessary depending on high-risk criteria at the time of enucleation. Adjuvant therapy postenucleation has been shown to decrease metastasis in advanced RB from 24 to 4 percent of children.

Intra-arterial chemotherapy

Physicians in Japan revolutionized the treatment of RB by infusing melphalan directly into the ophthalmic artery. The initial technique consisted of catheterization of the internal carotid artery and occlusion of a micro-balloon distal to the ophthalmic artery. During the temporary occlusion, melphalan was infused into the ophthalmic artery. The study involved 563 intra-arterial chemotherapy procedures in 187 patients with no reported serious complications, including stroke. The most common complications were mild transient bradycardia, periorbital erythema and swelling.

Following the initial publication, many large centers had significant interest in developing the technique in patients.
Recent studies have validated the efficacy of intra-arterial chemotherapy. Interest in intra-arterial delivery of other chemotherapeutic agents has prompted various small studies. This strategy has been investigated to avoid melphalan dose restriction during bilateral therapy. Jasmine Francis, MD, and colleagues at Memorial Sloan-Kettering reported in 2012 that the use of single-agent carboplatin at doses ranging from 25 to 40 mg and cumulative doses from 25 to 100 mg, in three cases where high-dose melphalan was needed in the contralateral eye and systemic toxicity limited the use of melphalan to one eye. They reported tumor regression with as little as one cycle and no systemic adverse effects.

Similar results have been reported with intra-arterial infusion of both carboplatin and topotecan. In addition, analysis of electroretinogram (ERG) responses following infusions containing carboplatin only and carboplatin with topotecan revealed no statistically significant change.

Three-drug intra-arterial treatment

Most recently, a trend toward three-drug intra-arterial treatment (carboplatin, melphalan and topotecan) has been reported. Twenty-six eyes of 25 patients received the three-drug chemotherapy for treatment of advanced retinoblastoma. Dose ranges were 2.5 to 7.5 mg of melphalan, 0.3 to 0.6 mg of topotecan and 25 to 50 mg of carboplatin. Median infusions per eye were two (range: two to four). The Kaplan-Meier estimate of ocular survival at 24 months was 75 percent. ERG showed improvement greater than 25 µV in four eyes (15 percent), loss greater than 25 µV in 12 eyes (46 percent) and no change greater than 25 µV in 10 eyes (39 percent).

Other large studies have also reported successful treatment with this regimen. These findings suggest that selective intra-arterial combination therapy with carboplatin and melphalan is effective in the treatment of RB and decreases the toxic window during treatment especially in patients that need bilateral therapy.

Sequential intravenous chemotherapy followed by intra-arterial chemotherapy (bridge chemotherapy) for young infants with retinoblastoma may be considered in cases were cannulation of the ophthalmic artery is not possible.

Intravitreal chemotherapy

The significant tumoricidal effects reported with intra-arterial melphalan generated enthusiasm to study intravitreal delivery for vitreous seeding. However, the potential for tumor dissemination through the needle tract following intravitreal penetration has limited its use.

In 2012 researchers at Jules-Gonin Eye Hospital in Switzerland reported the first clinically documented case series of patients with retinoblastoma treated with intravitreal melphalan. The study included 122 intravitreal injections of melphalan in 23 eyes that had significant active vitreous seeding after primary therapy.
Retention was achieved in 87 percent (20 of 23) of patients. Despite the confounding effects of concomitant chemotherapy, the study showed that intravitreal melphalan achieved unprecedented control of vitreous seeding.27

A recent bi-institutional cohort study evaluated the vitreous seed response after 475 intravitreal melphalan injections.28 The study included 87 eyes treated weekly (median dose, 30 µg) with a median of five treatments per eye (range, one to 12 times). The two-year Kaplan-Meier estimates for ocular survival and patient survival were 90.4 percent and 100 percent, respectively. Other authors have also reported on the efficacy of intravitreal melphalan for the treatment of RB (Figure 4).20-31

The risk of tumor dissemination after intravitreal injection was evaluated in a 2013 study of 304 patients following therapeutic intravitreal melphalan injections for RB.32 Only one patient had extraocular tumor spread.

The proportion of subjects with extraocular tumor spread potentially due to intravitreal treatment in these combined reports was 0.007 (95% confidence interval, range of 0.0008 to 0.0236), with a mean follow-up of 72.1 months. No reports of tumor spread occurred in a subset of 61 patients receiving intravitreal treatment via safety-enhancing injection techniques (347 injections, 19.6 months mean follow-up). This study concluded that RB metastasis following intravitreal therapy is rare and shouldn’t preclude its clinical use in appropriately selected cases.

Intravitreal chemotherapy safety

Data regarding toxicity of intravitreal melphalan continues to be limited. A 2014 study that evaluated retinal and systemic toxicity of intravitreal melphalan in a rabbit model concluded that weekly injections of 30 µg of melphalan can result in a decreased ERG response.33 Previous studies have also shown that 50-µg of intravitreal melphalan is toxic to the eye with persistent hypotonia and phthisis bulbi.31 In contrast, 20/40 visual acuity has been reported in a patient that received four doses (30, 30, 30 and 20 µg) of intravitreal melphalan with no change in ERG amplitudes before and after therapy.30

Effective intravitreal combination of melphalan (40 µg in 0.04 mL of diluent) and topotecan (8 to 20 µg in 0.04 mL of balanced salt solution) has also recently been reported in nine eyes.34 In the study, no cases of episcleral or orbital retinoblastoma extension or remote retinoblastoma metastasis were reported. There was no change in the A and B waves of bright-flash ERG.

Most recently, a study published this year by Dr. Abramson and colleagues showed that intravitreal chemotherapy may be effective in primary treatment non-vitreous disease, including subretinal seeding, anterior segment dissemination and select retinal tumors.35

(Continued on page 21)
START WITH
THE POWER OF EYLEA

AS DEMONSTRATED IN PHASE 3 CLINICAL TRIALS\(^1\)

INDICATIONS AND IMPORTANT SAFETY INFORMATION

EYLEA\(^\text{®}\) (aflibercept) Injection 2 mg (0.05 mL) is indicated for the treatment of patients with Neovascular (Wet) Age-related Macular Degeneration (AMD), Macular Edema following Retinal Vein Occlusion (RVO), Diabetic Macular Edema (DME), and Diabetic Retinopathy (DR).

CONTRAINDICATIONS

- EYLEA\(^\text{®}\) (aflibercept) Injection is contraindicated in patients with ocular or periocular infections, active intraocular inflammation, or known hypersensitivity to aflibercept or to any of the excipients in EYLEA.

WARNINGS AND PRECAUTIONS

- Intravitreal injections, including those with EYLEA, have been associated with endophthalmitis and retinal detachments. Proper aseptic injection technique must always be used when administering EYLEA. Patients should be instructed to report any symptoms suggestive of endophthalmitis or retinal detachment without delay and should be managed appropriately. Intraocular inflammation has been reported with the use of EYLEA.
- Acute increases in intraocular pressure have been seen within 60 minutes of intravitreal injection, including with EYLEA. Sustained increases in intraocular pressure have also been reported after repeated intravitreal dosing with VEGF inhibitors. Intraocular pressure and the perfusion of the optic nerve head should be monitored and managed appropriately.
- There is a potential risk of arterial thromboembolic events (ATEs) following intravitreal use of VEGF inhibitors, including EYLEA. ATEs are defined as nonfatal stroke, nonfatal myocardial infarction, or vascular death (including deaths of unknown cause). The incidence of reported thromboembolic events in wet AMD studies during the first year was 1.8% (32 out of 1824) in the combined group of patients treated with EYLEA compared with 1.5% (9 out of 595) in patients treated with ranibizumab; through 96 weeks, the incidence was 3.3% (60 out of 1824) in the EYLEA group compared with 3.2% (19 out of 595) in the ranibizumab group. The incidence in the DME studies from baseline to week 52 was 3.3% (19 out of 578) in the combined group of patients treated with EYLEA compared with 2.8% (8 out of 287) in the control group; from baseline to week 100, the incidence was 6.4% (37 out of 578) in the combined group of patients treated with EYLEA compared with 4.2% (12 out of 287) in the control group. There were no reported thromboembolic events in the patients treated with EYLEA in the first six months of the RVO studies.

EYLEA is a registered trademark of Regeneron Pharmaceuticals, Inc.

REGENERON

© 2019, Regeneron Pharmaceuticals, Inc. All rights reserved.
777 Old Saw Mill River Road, Tarrytown, NY 10591
Trust ≈8 Years of Extensive Clinical Experience and the Integrity of Data From Large, Well-Controlled Trials¹

EYLEA IS THE
#1 PRESCRIBED ANTI-VEGF FDA APPROVED FOR WET AMD, DME, AND MEfRVO²,³
*IBM Truven MarketScan data: Number of injections administered from Q4 2017 through Q3 2018; data on file.

≈8 YEARS OF REAL-WORLD EXPERIENCE¹

AN ESTIMATED
≈9 MILLION DOSES ADMINISTERED TO ≈790,000 EYES TREATED SINCE LAUNCH¹

8 PHASE 3 CLINICAL TRIALS INCLUDING MORE THAN 3000 EYLEA-TREATED PATIENTS STUDIED ACROSS ALL APPROVED INDICATIONS

Start with EYLEA. Visit HCP.EYLEA.US to see our data.

ADVERSE REACTIONS
• Serious adverse reactions related to the injection procedure have occurred in <0.1% of intravitreal injections with EYLEA including endophthalmitis and retinal detachment.
• The most common adverse reactions (≥5%) reported in patients receiving EYLEA were conjunctival hemorrhage, eye pain, cataract, vitreous detachment, vitreous floaters, and intraocular pressure increased.

Please see Brief Summary of Prescribing Information on the following page.

anti-VEGF = anti–vascular endothelial growth factor; AMD = Age-related Macular Degeneration; DME = Diabetic Macular Edema; MEfRVO = Macular Edema following Retinal Vein Occlusion.

Adverse Reactions

Table 3: Most Common Adverse Reactions (≥1%) in DME Studies

<table>
<thead>
<tr>
<th>Adverse Reactions</th>
<th>Baseline to Week 52</th>
<th>Baseline to Week 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eylea</td>
<td>28%</td>
<td>20%</td>
</tr>
<tr>
<td>Control</td>
<td>27%</td>
<td>23%</td>
</tr>
<tr>
<td>Eylea</td>
<td>25%</td>
<td>22%</td>
</tr>
<tr>
<td>Control</td>
<td>23%</td>
<td>23%</td>
</tr>
</tbody>
</table>

11/12/19 3:36 PM
Further studies are required to assess the safety of long-term intravitreal therapy and to better delineate its role in the management of retinoblastoma. The adoption of specific guidelines for intravitreal treatment case selection and additional data on potential ocular toxicity remain essential to enable a more widespread use of this treatment.

Periocular chemotherapy

Focal therapies aim at increasing the tumoricidal effects in RB-affected tissues while minimizing systemic toxicity. Multiple researchers have investigated periocular chemotherapy as adjuvant to systemic, intra-arterial and intravitreal chemotherapy.36-39

Treatment-associated toxicities may include transient periorbital edema, strabismus, optic neuropathy, periocular inflammation and fat atrophy. Inflammation associated with periocular agents, particularly carboplatin, has limited their widespread use in children with RB. Periocular topotecan hydrochloride has also been investigated as adjuvant therapy in patients with RB with minimal toxicity.40

A study by one of us (TGM) and colleagues evaluated the effects of intravitreal and subconjunctival melphalan on tumor burden, hypoxia and vasculature in a transgenic mouse retinoblastoma model. We reported a significant decline in hypoxia at one week following intravitreal injection and after maximum dosage of subconjunctival melphalan.41 This study found a significant decrease in tumor burden following serial subconjunctival injections of melphalan, showing an 86 percent reduction. No toxicities were seen on histology following treatments.

Prospective studies are needed to assess the role of periocular chemotherapies for the treatment of RB. The trend toward direct intravitreal therapy has limited the widespread use of periocular treatments.

Shifting treatment trends

Over the last three decades, major shifts in therapy have occurred. Historically, enucleation was the treatment of choice before the 1980s, followed by transition to external beam radiotherapy (EBRT) through the mid 1990s, moving to systemic chemotherapy with laser tumor ablation until 2010, when intra-arterial chemotherapy was instituted at major ocular oncology centers. Currently, each of these modalities continues to have a role in treatment, with the major focus remaining cure of the retinoblastoma cancer, avoidance of mortality and an evolving recognition of the ability to preserve function within these complex eyes.

Sadly, for primary enucleation therapy within the United States, recent reports by Carol Shields, MD, and David Abramson, MD, have noted a metastatic incidence over the last decade approaching 4 percent. Addressing this concern, our group has used chemotherapy (both systemically and intra-arterially) before enucleation to lower metastatic risk and ultimately mortality. With this targeted approach, our metastatic rate is below 1 percent, suggesting a benefit to this targeted approach. Clearly, early detection, integration of advanced therapies and serial screening for our retinoblastoma patients are critical.

Bottom line

Ocular oncology is currently navigating through a therapeutic revolution that is geared toward the application of focal individualized therapies. The majority of these changes in management have happened without clinical trials. Clinical experience remains the most important tool in the management of patients with RB. We anticipate large randomized clinical trials that will better delineate how to use the available therapeutic options more efficiently.

REFERENCES

Clearing up the language of retinal imaging

A review of the International Widefield Imaging Study Group recommendations for a terminology to describe image captures from various modalities.

By Netan Choudhry, MD, FRCSC

Take-home points

- Definitions bring consistency to the use of widefield and ultra-widefield to describe retinal images.
- The four vortex veins provide anatomical landmarks that are integral to the definitions the consensus group agreed on.
- The definitions are predicated on the agreed-upon definition of field of view centered on the macula.
- Going forward, the study group will continue to evaluate new technologies.

The recommendations for terminology for ophthalmic imaging by the International Widefield Imaging Study Group, published online in October in *Ophthalmology Retina,* had been highly anticipated.

As the lead author of those findings, *Retina Specialist Magazine* has asked me to provide some context on what those findings mean for us in the clinic.

This study group came together because over the last several years a great deal of confusion in the literature has surrounded the terminology for describing images captured by the various modalities we have at our disposal: color fundus photography; fluorescein angiography; autofluorescence; indocyanine green angiography; optical coherence tomography (OCT B-scans); and en face OCT angiography.

Most prominent among these are the terms widefield and ultra-widefield. Manufacturers have used their own terminology and that has had some influence on the nomenclature researchers have used in their papers. However, this is an area in which there’s never been a consensus of how we define these terms. Reaching that consensus was the goal of this group.

Examples of unclear terminology

Here are two examples of the confusion that has existed. An article that reports on an OCT scan that doesn’t go beyond the arcades to acquire a full view of the retina and uses the term widefield enface imaging isn’t really giving us the full perspective. The reader may then associate the term widefield with that field of view, but the image doesn’t even show half of the retina, or maybe even more than half.

Or take an OCT that doesn’t show a single line scan of a lesion in the far periphery. Would that be considered a widefield or ultra-widefield view, or neither? So the question is, how do we unify our language so we’re all saying the same thing in the literature?

Key definitions

The anatomical features integral to the IWFISG’s recommendations are the four anatomical features supply anatomical landmarks that are integral to the definitions the consensus group agreed on.

Going forward, the study group will continue to evaluate new technologies.

Bio

Dr. Choudhry is co-founder and medical director of Vitreous Retina and Macula Specialists of Toronto, Etobicoke, Ontario, and is with the Department of Ophthalmology and Visual Sciences at the University of Toronto and staff ophthalmologist at Cleveland Clinic Canada, Toronto.

DISCLOSURES: Dr. Choudhry disclosed he is a consultant for Topcon, Optos, Bayer, Allergan, Novartis, Carl Zeiss Meditec and Ellex, and receives research equipment from Topcon, Optos and Carl Zeiss Meditec.
vortex veins that most, although not all, patients have. The definitions for fundus photography, angiography and AF the group has suggested are:

- **Posterior pole**—retina within the arcades and just slightly beyond them.
- **Midperiphery**—region of the retina up to the posterior edge of the vortex vein ampulla.
- **Far periphery**—region of the retina anterior to the vortex vein ampulla.

Widefield—single-capture image centered on the fovea and capture the retina in all four quadrants, posterior to and including the vortex vein ampullae.

- **Ultra-widefield**—single-capture view of the retina in the far periphery in all four quadrants.
- **Panretinal**—a single-capture, 360-degree ora-to-ora view of the retina.

For OCT, the definitions vary somewhat. For OCT B-scans, the following principles apply:

- They’re used primarily for cross-sectional examination of the retina.
- Field of view does not apply.
- Scans are defined in terms of scan length (mm).
- Pixelation and aspect ratio may vary among scans.
- No single scan can universally define a widefield OCT scan.
- The description should include:
 - scan size;
 - location;
 - scan type;
 - whether or not it is a montage; and
 - symmetry.

For OCTA scans, the key definitions are slightly different:

- **Widefield**—retina in all four quadrants and include the retina up to the posterior edge of vortex vein ampullae.
- **Ultra-widefield**—retina in all four quadrants beyond the anterior edge of the vortex vein ampullae.
The IWFISG involved 11 of the more senior thought leaders in the field who decided to get together to find a formal way to tackle the problem of trying to define the terms used to describe ophthalmic images. Srinivas R. Sadda, MD, of the University of California Los Angeles Stein Eye Institute and I developed the format for the consensus proceedings. We selected the consensus panel participants based on their published work on retinal imaging.

Each member was sent the following set of seven individual, high-quality images from the most commonly used imaging modalities from both normal and diseased eyes:

- Swept-source optical coherence tomography montage image extending from the nasal to the temporal equator in an eye with a macular hole (DRI Triton, Topcon).
- A pseudocolor image extending from the nasal to temporal ora serrata in an eye with peripheral retinal holes (Optos Tx-200).
- A normal fundus photograph montage spanning a reported 110 degrees (Eidon, CenterVue).
- Fluorescein angiogram montage of an eye with Coat’s disease (Optos Tx-200).
- Swept-source OCT B-scan through a vortex vein (DRI Triton, Topcon).
- Asymmetric panretinal OCT montage of senile retinoschisis (Heidelberg Spectralis).
- Swept-source 12 x 12 mm OCT angiography of a normal fundus (Plex-Elite, Carl Zeiss Meditec).

The package did not provide any device-specific information.

We asked the members to note what the images showed, what terms they would use to describe them and how they would define those terms. The pre-meeting preparation also included a review of the peer-reviewed published literature using the search terms widefield and ultra-widefield, and a systematic review of the numerous advances in obtaining progressively wider retinal images. Each member presented their findings to the group before the roundtable meeting.

At the meeting, the members discussed their findings from each of the seven test images with the goal to determine how we should best define the terms. The most frequently used term from the pre-meeting survey was used as the focus of the discussion. The dialog carried on until the group reached unanimous consent on a term.

— N.C.

Field of view

These definitions are predicated on the definition of field of view; that is, the macula should be at the center of the image, and the cut points should correspond to commonly visualized anatomical features—the vortex vein ampullae. The IWFISG also made recommendations for key regions within the retina (Table, page 27).

There are variations on these definitions:

- Asymmetric widefield or ultra-widefield—an image that captures only the temporal, nasal, superior or inferior aspects of the retina.
- Montage—a scenario where photographers take multiple images and stitch, or montage, them together to provide the full perspective, but this isn’t really a single-capture image; this is, instead, widefield montage, indicating that it was put together by multiple images.

Some of this becomes academic but descriptive because in retinal imaging we describe findings. From the reader’s or investigator’s perspective, it creates a roadmap as to how a particular image was captured.

There are caveats. Montaging images involves image overlap, and sometimes data may be lost. But a single-capture image does not in theory lose data. The editing process to create a montage image may inadvertently leave out some details. So an image that’s called simply a widefield...
OCT-specific definitions

In OCT applying the anatomical boundaries for widefield or ultra-widefield definitions can be difficult because OCT doesn’t capture all four vortex veins in all four quadrants. So the IWFISG felt that the descriptions for OCTs should be based on the length of the scan—9, 16 or 23 mm—and then, again, also to indicate whether a montage was used, and whether it’s a structural B-scan that shows only the anatomy, or a full B-scan that shows blood flow, such as that seen with OCT angiography.

And then, the IWFISG felt the terminology must also address the region the scans capture. A scan of the macula that’s part of the posterior pole would be a 9-mm, posterior pole, structural B-scan. An image farther out in the periphery toward the pars plans would be a 3-mm, far peripheral, structural B-scan. These descriptions tell the reader the region of the retina the scan is from, the length of the scan and whether the scan is showing structure or flow.

Describing images has become so complicated only because our technology is advancing rapidly and our modalities are expanding. We must be descriptive in how we communicate with each other. It’s not that different from the way radiologists describe MRI and CT-scans. They’re very descriptive of whether it’s a diffusion-weighted image, whether dye has been used, where the cuts are, or whether it’s a coronal scan or a sagittal scan.

Are manufacturers on board?

The IWFISG has shared our consenus definitions with the manufacturers of these devices. We purposefully included all the different manufacturers’ images to eliminate bias in our findings. Ultimately, it’s the physicians and the discipline of rational medicine that defines how we choose to describe these terms. Hopefully, industry will follow and respect the definitions that we’re putting forward, and, at the same time, work internally to try to achieve that panretinal image. That’s really the holy grail for all of us as practitioners. If we can capture all the data in one image, we can walk through our patient day quickly and provide the greatest amount of information.

What’s next for IWFISG

The next action for the group is to continue to evaluate new technologies together and help position them in terms
of where they fit into our practice, how we would define them and what their strengths and limitations are. As new technology emerges and new machines come out, we will be able to provide feedback on where they’re strong, where they need to be improved and where they’re best utilized. We have many great devices from many great manufacturers, and each device has a unique niche and a unique position in the work that we do.

Bottom line

No two devices are alike. Each has a strength, whether it’s an ability to capture an image quickly, the quality of the image, the software, the analytics, the speed of use, patient preference or comfort, they all vary in a variety of ways. Side-by-side comparisons of all devices are challenging, so the study group’s recommendations for terminology are all the more important. ☛

REFERENCE

Table. Definitions for key regions within the retina

<table>
<thead>
<tr>
<th>Region</th>
<th>Field of view</th>
<th>Anatomical location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posterior pole</td>
<td>~50 degrees</td>
<td>Retina just beyond the disc and arcades</td>
</tr>
<tr>
<td>Midperiphery</td>
<td>~60 to 120 degrees (widesfield)</td>
<td>Retina up to the posterior edge of the vortex vein ampulla</td>
</tr>
<tr>
<td>Far periphery</td>
<td>~110 to 220 degrees (ultra-widefield)</td>
<td>Anterior edge of vortex vein ampulla and beyond to pars plana</td>
</tr>
</tbody>
</table>

Retina Rounds: Melanoma? Or pseudomelanoma?

(Continued from page 12)

Can have hollow, intermediate, solid or irregular acoustic quality. Intravenous fluorescein angiography reveals patchy blockage of choroidal fluorescence related to subretinal hemorrhage, sub-RPE hemorrhage or RPE hyperplasia. 4

Observation is appropriate for asymptomatic patients because most PEHCR lesions stabilize or regress with time. Vitrectomy may be indicated for visual impairment due to associated vitreous hemorrhage.

Potential role for anti-VEGF

There is no standard of care for patients who become symptomatic due to macular extension of subretinal hemorrhage or fluid. However, anti-VEGF treatment may have potential benefit. A series in Turkey involved 12 eyes with two or three consecutive intravitreal injections of bevacizumab. 7 In nine eyes (75 percent), the PEHCR lesions significantly regressed, while in three eyes (25 percent), the lesions extended into the macula despite treatment.

A German series treated nine eyes with an average of three anti-VEGF injections (either 1.25-mg bevacizumab or 0.5-mg ranibizumab [Lucentis, Genentech/Roche]) to achieve complete resolution of macular subretinal fluid. 8 In three eyes, subretinal fluid reappeared after an average of 10 months, and 2.5 anti-VEGF injections were necessary to attain complete resolution of macular subretinal fluid for a second time.

Cryotherapy, laser photocoagulation, photodynamic therapy and intravitreal steroid therapy have all been proposed as potential treatments for PEHCR. However, further investigations are needed to demonstrate the efficacy of these treatments. ☛

REFERENCES

The retina and the central nervous system share embryologic origin, and it's thought that changes in retinal tissue may mirror those in the brain, especially in neurodegenerative disease states. Neurodegenerative disease is a general term that describes many nervous system disorders characterized by progressive death of neurons. The idea that neurodegenerative diseases (ND) may have ocular manifestations was popularized in 1986 when researchers at the University of Southern California identified widespread degeneration of axons in the optic nerve in postmortem subjects with Alzheimer’s disease. This further promoted the notion that other neurodegenerative diseases may also have ocular manifestations.

Neurodegenerative diseases are typically associated with progressive change and decline in cognitive function, behavior, motor and other brain functions, eventually leading to dementia. Today, 50 million people worldwide are living with dementia and, as life expectancy continues to rise, this number is expected to triple by 2050.

Making the diagnosis of neurodegenerative diseases

The differential diagnosis of neurodegenerative disease represents a major clinical challenge with significant overlap of symptoms despite disparate pathologies. The gold standard for the definitive diagnosis is brain pathology obtained at autopsy. However, deep clinical phenotyping with in vivo investigations such as structural and molecular brain imaging and cerebrospinal fluid (CSF) analyses can provide a probabilistic diagnosis premortem, such as “possible” or “probable” Alzheimer’s dis-

Take-home points

- Because of the correlation between ocular pathology and neurodegenerative disease, ocular imaging is a potentially powerful tool in diagnosis and treatment trials.
- Studies of optical coherence tomography angiography have found reduced vascular density, foveal avascular zone enlargement and reduced flow rates in patients with Alzheimer’s disease.
- Retinal imaging studies in Huntington’s disease, though limited, have reported ocular pathology including reduced retinal nerve fiber and ganglion cell layer thickness.
- In Parkinson’s disease, retinal volume loss and RNFL thickness that correlates with disease progression and visual function have been reported.
ease. However, these methods are costly, invasive, time consuming and are rarely performed before the onset of irreversible clinical symptoms. Therefore, there is a dire need for cheap, non-invasive, practical and precise screening tests for evaluation of people at risk for dementia. Because of the noted correlation between ocular pathology and ND, imaging of the eye represents a potentially powerful avenue for augmenting their diagnosis and treatment.

Retinal imaging technology has advanced considerably in the past few decades. Non-invasive, highly precise, in vivo evaluation of retinal tissue represents a feasible and cost-effective method for developing biomarkers in both advanced and presymptomatic patients. Here, we will review retinal changes and potential biomarkers identified via retinal imaging in some of the most common forms of neurodegenerative disease.

Alzheimer’s disease

Alzheimer’s Disease, the most prevalent subtype of neurodegenerative disease, affects 5.8 million people in the United States alone and is the sixth leading cause of death. While the exact pathogenesis is not clear, AD is characterized by aggregation of abnormal extracellular beta-amyloid (Aβ) plaques and intracellular tau neurofibrillary tangles, which may precede symptom onset by decades. However, histological and in vivo retinal imaging studies have revealed multiple manifestations of the disease in the retina itself. Perhaps most intriguing is the recent identification of Aβ and tau deposition in postmortem retinal tissue, which appears to follow a perivascular pattern.

In support of this pathological evidence, numerous retinal changes in AD have been reported in vivo. Mild cognitive impairment (MCI) is a term used to describe the first identifiable symptoms of dementia. Even in this early disease state, both significant atrophy and hypertrophy of the retinal nerve fiber layer have been reported when comparing MCI patients to healthy controls. Increased RNFL thickness may indicate a later-MCI/early-AD process, since inflammation may cause local thickening prior to tissue loss, but the bulk of evidence suggests that subtle retinal changes occur in even the earliest stages of disease. In advanced stages, findings are more or less unanimous, indicating significant neurodegenerative processes such as thinning of the RNFL and ganglion cell layer (GCL), and loss of dendritic arborization when comparing AD patients to controls.

Neurovascular changes in AD

Recently, researchers have turned their attention toward neurovascular changes in AD. Here, the retina provides a unique opportunity to quantify CNS microvasculature in vivo with a resolution not available elsewhere. Studies examining retinal vasculature alteration in AD can be categorized by either the structure or function of retinal vessels. Likely due to low measurement sensitivity, studies extracting vascular measures from fundus imaging have reported conflicting findings when comparing venular and arteriolar caliber, tortuosity and fractal dimension between AD and controls.

However, there seems to be a trend toward reduced vascular function when comparing AD to controls, with increased arteriolar and venular oxygen saturation, reduced blood flow and speed, and exaggerated and prolonged neurovascular coupling. Recently, optical coherence tomography angiography has become a preferred measurement of retinal vasculature, with improved resolution and sensitivity over other imaging modalities. Studies using OCTA have reported reduced vascular density, enlargement of the foveal avascular zone and reduced flow rates when comparing AD patients to controls.

Huntington’s disease

Huntington’s disease or Huntington’s chorea is a heritable, fully penetrant and fatal ND characterized by cognitive, motor and psychiatric disturbance due to...
atrophy of the basal ganglia and cerebral cortex. In western populations, its prevalence is 10.6 to 13.7 per 100,000. Unlike most neurodegenerative diseases, the pathology and cause of HD are relatively well understood—an autosomal dominant mutation in the huntingtin (HTT) gene. Visual dysfunction and perceptual disturbance in HD are well documented and have been reviewed thoroughly elsewhere.

However, retinal imaging studies in HD are limited. To the best of our knowledge, only four groups have reported on them over the last decade. These studies found reduced temporal pRNFL thickness; reduced macular RNFL, GCL, inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL) and choroidal thickness; and no significant difference between total macular volume and global pRNFL between HD patients and controls.

In addition, pRNFL and macular thicknesses were found to negatively correlate with disease duration and the Unified HD Scale Motor Score in HD patients.

Parkinson’s disease

Parkinson’s disease is one of the more common neurodegenerative diseases in the developed world, with a prevalence of 0.3 percent and an estimated incidence of eight to 18 out of 100,000. Disability in PD is thought to result from dysregulation and degeneration of dopaminergic neurons in the basal ganglia, accompanied by reduction of the catecholamine neurotransmitter dopamine. PD is a multi-system disorder characterized by both motor symptoms, such as tremor, bradykinesia and rigidity, as well as cognitive decline, hyposmia, autonomic failure and visual disturbance.

Visual disturbance in PD ranges from reduced visual acuity to complex hallucinations, symptoms that are not confined to the retina, involving posterior cortical regions. However, several reports have demonstrated significant changes in retinal structure in PD. Reduced peripapillary RNFL thickness has been found globally in PD patients compared to controls. Reduced total macular thickness has also been observed in PD patients with more significant thinning demonstrated in the inner retinal layers. In addition to observed group differences in retinal volume loss, RNFL thickness has been reported to correlate with disease progression, as well as visual function.

Researchers in Spain were able to confirm these findings longitudinally, reporting higher rates of RNFL thinning and reduction in macular thickness at five-year
Researchers in South Korea found that macular thickness was significantly correlated with dopamine transporter uptake density in the substantia nigra, indicating that retinal thinning was associated with dopaminergic neuronal loss in the basal ganglia.

Emerging imaging modalities

While OCT has been the mainstay for identifying many retinal changes found in neurodegenerative diseases, a number of emerging technologies hold additional promise. In addition to OCTA, three additional technologies are at much earlier stages of investigation, but have already begun to yield insights into AD.

- **Fundus autofluorescence.** This imaging method is designed to capture the intrinsically fluorescent features of retinal tissue. For example, as RPE cells phagocytize outer segments, lipofuscin accumulates in the cells. Lipofuscin can fluoresce when stimulated by light from a broad spectral range spanning from 500 to 800 nm. Excess lipofuscin accumulation in surviving RPE will appear as hyper-autofluorescence, whereas RPE atrophy and loss will result in hypo-autofluorescence. Other retinal features may also have autofluorescence patterns that are in the early stages of research. For example, beta amyloid accumulation may also be associated with autofluorescence that has yet to be clearly described.

- **Fluorescence lifetime imaging ophthalmoscopy.** FLIO is a new autofluorescence-based system that utilizes the FAF signal but measures the FAF signal duration or lifetime. The concept of measuring fluorescence lifetime decay in theory should provide more sensitivity and specificity for detecting pathological changes. FLIO has been used to describe early changes in macular telangiectasia type 2 (MacTel) and age-related macular degeneration as well as other degenerative diseases, which may impact macular pigments.

- **Dynamic vessel analysis.** DVA is a system that evaluates real-time morphological changes in the retinal microvasculature in response to stimuli presented in the form of flickering lights. Eyes of healthy controls have been shown to demonstrate a characteristic response curve, with primary vasodilation and secondary vasoconstriction when presented with the stimulus. AD patients have been shown to not only have a decreased reaction amplitude but a reduction in arterial dilation as well. This change has been described as a downstream effect of neurovascular decoupling in the progression of both vessel and nerve disease.

Limitations of imaging studies

As with any emerging field, there are several limitations to the conclusions gleaned from these imaging studies. First and foremost, there is no direct causation yet established between Alzheimer’s disease severity, duration or progression with RNFL thickness or microvascular density. This is related to the question of receiving an AD diagnosis in and of itself and the fact that the site of disease—the brain—is rather inaccessible until postmortem in most cases.

Moreover, diseases such as AMD, glaucoma, vascular diseases including diabetes and hypertension, and other confounders that affect the macula are prevalent in aging populations and may be overestimating the contribution of AD to these measurements. The impact of medications used to treat these diseases themselves can have effects on the measurements of microvascular morphology, further confounding conclusions. Ultimately, longitudinal studies using well-developed and established imaging modalities will need to be conducted to tease apart the multifactorial contributions to retinal changes that have been identified in neurodegenerative disease.

Bottom line

An ounce of prevention is worth a pound of cure. By monitoring thinning in the GCL and RNFL, watching for changes to vessel morphology and assaying vessel density, we
may be able to combine different imaging modalities to determine a patient’s diagnostic likelihood for dementia. We may then begin to answer questions regarding prevention and treatment efficacies and make observations on whether retinal changes are progressive, and whether they can be reversed. In this way, noninvasive ophthalmic imaging is likely to continue to develop an increasing role in the diagnosis and possibly management of subjects with dementia.

REFERENCES

A cute intraocular pressure increases are a well-known common complication of intravitreal anti-VEGF injections. A study in Italy found that 88.9 percent of eyes had an IOP of greater than 30 mmHg directly following injection of ranibizumab (Lucentis, Genentech/Roche).¹ A recent analysis of the IRIS registry found a small and probably not clinically significant decrease in IOP from anti-VEGF injections over time, but a small percentage of patients had an IOP increase that could be clinically significant.² Research has suggested that the rise in IOP may be related to anti-VEGF interaction with nitric oxide physiology and/or three polymorphisms of the CD36 gene.² Further clinical studies are needed to better understand the mechanism responsible for chronic IOP increases after anti-VEGF injections.

Chronic IOP change
A recent analysis using the IRIS registry has found a small but statistically significant decrease in IOP with use of anti-VEGF injections. Conducted by Elizabeth Atchison, MD, and colleagues, the study analyzed 23,776 unique patients from the IRIS registry who had been diagnosed with neovascular age-related macular degeneration, diabetic macular edema, branch retinal vein occlusion or central retinal vein occlusion.³ Patients received injections of bevacizumab (Avastin, Genentech/Roche, 56 percent), ranibizumab (25 percent) or aflibercept (Eylea, Regeneron Pharmaceuticals, 19 percent).³ Patients received injections of bevacizumab (Avastin, Genentech/Roche, 56 percent), ranibizumab (25 percent) or aflibercept (Eylea, Regeneron Pharmaceuticals, 19 percent) in the right eye but no treatment in the left. Only patients with at least 12 injections of the specified anti-VEGF were examined.

All subgroups of patients showed a small mean decrease in IOP from the baseline to the last injection. On average, the bevacizumab patients had a 1.2-mmHg decrease in IOP in the treated eye compared to aflibercept with a 0.5-mmHg decrease in IOP.

Take-home points
> Immediately following an injection of ranibizumab, nearly 90 percent of eyes have been reported to have an intraocular pressure of > 30 mmHg.
> A recent analysis of the IRIS registry found a small and probably not clinically significant decrease in IOP from anti-VEGF injections over time, but a small percentage of patients had an IOP increase that could be clinically significant.
> Research has suggested that the rise in IOP may be related to anti-VEGF interaction with nitric oxide physiology and/or three polymorphisms of the CD36 gene.
> Further clinical studies are needed to better understand the mechanism responsible for chronic IOP increases after anti-VEGF injections.

By Lauren Burgett and Raj K. Maturi, MD

Bios
Ms. Burgett is an undergraduate at Duke University studying neuroscience and chemistry.

Dr. Maturi specializes in vitreoretinal medicine and surgery at Midwest Eye Institute, Indianapolis, and is a clinical associate professor, volunteer, at Indiana University School of Medicine.

DISCLOSURES: Dr. Maturi is on the executive committee of the Diabetic Retinopathy Clinical Research Network. He has received research funding from Kalvista Pharmaceuticals, Graybug Vision, Allergan, Genentech, Allegro Ophthalmics, Aerpio Pharmaceuticals, Jaeb Center for Health Research and Boehringer Ingelheim.

Ms. Burgett has no financial disclosures.
decrease. The change for patients on ranibizumab was lower—a 0.2-mmHg decrease. Average fellow-eye change in IOP for all groups was a 0.2-mmHg decrease. While these changes are all statistically significant, the small mean decrease may not be of significant clinical importance.

On the other hand, incidents of clinically significant IOP rises, defined by the researchers as an increase of ≥ 6 mmHg from baseline resulting in an IOP ≥ 21 mmHg, were 2.6 percent overall vs. 1.5 percent in the fellow eye (Figure). The difference in IOP between treated and untreated fellow eyes was statistically significant for bevacizumab and ranibizumab, but not aflibercept. However, it’s important to note these numbers don’t account for the use of IOP-lowering medications, such as glaucoma drops.

Concern about increased IOP
While this study lacks the structure of prospective clinical trials, its use of real-world data reflects current clinical practice. The finding of decreased IOP from anti-VEGF injections, while proven statistically significant, is small and likely not of clinical importance. However, the small percentage of patients that experience an increase in IOP could be of clinical significance.

Currently, the exact mechanism that causes this adverse reaction is still under investigation. Additionally, the finding that aflibercept didn’t create any significant increase in IOP in a subgroup of patients compared to bevacizumab and ranibizumab requires further study. For example, could the authors now choose the left eye as the primary eye and run the same statistics to see if the same outcome could be achieved?

How anti-VEGF may influence IOP
Important differences between bevacizumab, ranibizumab and aflibercept lie in their pharmacodynamics, mechanisms
of action and targets. All three drugs are antagonists that bind to the active site of human vascular endothelial growth factor A inhibiting the ligands (VEGFR-1 and VEGFR-2) from binding to their endothelial receptors. Aflibercept has the highest binding affinity of the currently used anti-VEGF drugs.

While ranibizumab and bevacizumab only target VEGF-A, aflibercept targets placenta growth factor and VEGF-B as well. The half-life of aflibercept is estimated to be six days vs. nine days for ranibizumab and bevacizumab. All of these chemical differences could be contributing factors as to why aflibercept does not exhibit the same rate of chronic IOP rise.

Nitric oxide pathway

Aaron Ricca, MD, and colleagues at the University of Arkansas, suggested a physiologic vascular hypothesis for IOP increase arises from alteration of the nitric oxide pathway, which is known to relax smooth muscle and endothelial cells. Components of the nitric-oxide pathway have been identified in the anterior chamber. Nitric oxide has been shown to increase anterior chamber aqueous outflow by decreasing trabeculocyte size and vasodilating Schlemm’s canal.

Through its oncologic applications, anti-VEGF is known to disrupt the normal nitric oxide signaling pathway. When used systemically, anti-VEGF therapy is known to increase arterial hypertension through this mechanism. Taken together, this suggests that increases in IOP may be related to anti-VEGF interaction with nitric oxide physiology.

Genetics and IOP

A potential genetic basis for increased IOP after anti-VEGF therapy has been identified. Researchers in Australia and Europe examined 134 patients that received ranibizumab and identified three polymorphisms of the CD36 gene that were associated with significant IOP increase after therapeutic injection. One of the polymorphisms, rs1049673, was associated with pronounced IOP rise (IOP > 25 mmHg).

More connections between genetic and physiological factors are emerging. A National Institutes of Health study has demonstrated thrombospondin-1 inhibition of nitric oxide signaling via CD36. Richard Morshedi, MD, and colleagues proposed a clearer mechanism: Anti-VEGF upregulates nitric oxide synthesis, decreasing nitric oxide in the anterior chamber and creating decreased trabecular meshwork outflow, thereby increasing IOP.

Bottom line

Further clinical studies need to be carried out to better understand the complete mechanism responsible for chronic IOP increases as a complication of anti-VEGF injections.

REFERENCES
As the last major ophthalmology conference of the year, the American Academy of Ophthalmology seems to host an inordinate share of pivotal clinical trial readouts in all fields of ophthalmology, but especially in retina. At the Retina 2019 Subspecialty Day, which actually takes up two full days, no fewer than 14 presentations were of late-breaking developments or first-time results of clinical trials. Here, we share summaries of five compelling study readouts from AAO.

First results of intravitreal gene therapy for nAMD

The Phase I OPTIC trial evaluated an intravitreal gene therapy, ADVM-022 (Adverum Biotechnologies), for the treatment of neovascular age-related macular degeneration. ADVM-022 uses a proprietary vector capsid, AAV.7m8, to carry an aflibercept expression cassette. It’s a one-time injection designed to increase transduction of retina cells and increase expression of the anti-VEGF protein.

Szilard Kiss, MD, of Weill Cornell Medical College in New York, reported on 24-week data from the first cohort dosed in OPTIC (n=6). Patients received an injection of aflibercept at baseline before the ADVM-022 injection. The cohort reported no serious adverse events.

Findings on predictors of endophthalmitis, widefield OCT-A vs. FA and microsecond pulsing laser make five worthy takeaways.

By Ashkan M. Abbey, MD

Take-home points

- Intravitreal gene therapy shows promise for one-time treatment of neovascular age-related macular degeneration.
- Cell therapy demonstrates signal for treatment of retinitis pigmentosa.
- A multivariate analysis identified two independent predictors of endophthalmitis after intravitreal anti-VEGF injections.
- Microsecond pulsing laser proves potential for treating chronic central serous chorioretinopathy.
- Widefield optical coherence tomography and ultra-widefield fluorescein angiography demonstrate roles for evaluating nonperfusion.

As the last major ophthalmology conference of the year, the American Academy of Ophthalmology seems to host an inordinate share of pivotal clinical trial readouts in all fields of ophthalmology, but especially in retina. At the Retina 2019 Subspecialty Day, which actually takes up two full days, no fewer than 14 presentations were of late-breaking developments or first-time results of clinical trials. Here, we share summaries of five compelling study readouts from AAO.

First results of intravitreal gene therapy for nAMD

The Phase I OPTIC trial evaluated an intravitreal gene therapy, ADVM-022 (Adverum Biotechnologies), for the treatment of neovascular age-related macular degeneration. ADVM-022 uses a proprietary vector capsid, AAV.7m8, to carry an aflibercept expression cassette. It’s a one-time injection designed to increase transduction of retina cells and increase expression of the anti-VEGF protein.

Szilard Kiss, MD, of Weill Cornell Medical College in New York, reported on 24-week data from the first cohort dosed in OPTIC (n=6). Patients received an injection of aflibercept at baseline before the ADVM-022 injection. The cohort reported no serious adverse events.

Findings on predictors of endophthalmitis, widefield OCT-A vs. FA and microsecond pulsing laser make five worthy takeaways.

By Ashkan M. Abbey, MD

Take-home points

- Intravitreal gene therapy shows promise for one-time treatment of neovascular age-related macular degeneration.
- Cell therapy demonstrates signal for treatment of retinitis pigmentosa.
- A multivariate analysis identified two independent predictors of endophthalmitis after intravitreal anti-VEGF injections.
- Microsecond pulsing laser proves potential for treating chronic central serous chorioretinopathy.
- Widefield optical coherence tomography and ultra-widefield fluorescein angiography demonstrate roles for evaluating nonperfusion.

As the last major ophthalmology conference of the year, the American Academy of Ophthalmology seems to host an inordinate share of pivotal clinical trial readouts in all fields of ophthalmology, but especially in retina. At the Retina 2019 Subspecialty Day, which actually takes up two full days, no fewer than 14 presentations were of late-breaking developments or first-time results of clinical trials. Here, we share summaries of five compelling study readouts from AAO.

First results of intravitreal gene therapy for nAMD

The Phase I OPTIC trial evaluated an intravitreal gene therapy, ADVM-022 (Adverum Biotechnologies), for the treatment of neovascular age-related macular degeneration. ADVM-022 uses a proprietary vector capsid, AAV.7m8, to carry an aflibercept expression cassette. It’s a one-time injection designed to increase transduction of retina cells and increase expression of the anti-VEGF protein.

Szilard Kiss, MD, of Weill Cornell Medical College in New York, reported on 24-week data from the first cohort dosed in OPTIC (n=6). Patients received an injection of aflibercept at baseline before the ADVM-022 injection. The cohort reported no serious adverse events.

Findings on predictors of endophthalmitis, widefield OCT-A vs. FA and microsecond pulsing laser make five worthy takeaways.

By Ashkan M. Abbey, MD

Take-home points

- Intravitreal gene therapy shows promise for one-time treatment of neovascular age-related macular degeneration.
- Cell therapy demonstrates signal for treatment of retinitis pigmentosa.
- A multivariate analysis identified two independent predictors of endophthalmitis after intravitreal anti-VEGF injections.
- Microsecond pulsing laser proves potential for treating chronic central serous chorioretinopathy.
- Widefield optical coherence tomography and ultra-widefield fluorescein angiography demonstrate roles for evaluating nonperfusion.
Of the 19 adverse events potentially related to ADVM-022, 14 were mild in nature while five were moderate. No early clinically significant inflammation, vasculitis, retinitis or choroiditis occurred, and use of steroid drops did not worsen symptoms. Any anterior chamber cellular inflammation improved by week 24.

The trial is enrolling three other cohorts, and 52-week data on the first cohort is due in the first half of 2020. The company is also preparing an investigational new drug application in diabetic retinopathy in the same time frame.

The take home: Average change in BCVA was a loss of 2 letters at 24 weeks, and central subfield thickness decreased 52.7 µm. No patients required a rescue injection over 24 weeks. Updated results out to 34 weeks reported no additional adverse events and an improvement in BCVA to a loss of 1.5 letters.

Dr. Kiss is a consultant and adviser to Adverum, RegenxBio and Fortress Bio, and holds equity in the companies. He is also a consultant and adviser to Genetech/Roche and Novartis.

First-time results of cell therapy for RP

A cell therapy treatment for retinitis pigmentosa is the focus of a Phase I/IIa trial that Pravin U. Dugel, MD, of Retinal Consultants of Arizona, Phoenix, reported on. The subretinal human retinal progenitor cell (hRPC) is the subject of a Phase I/IIa trial. The therapy uses cells isolated from fetal retinas. It can differentiate into retinal cells and can be cryopreserved with a shelf life of nine months. The therapy does not require immunosuppression.

Among the potential benefits of hRPC are the ability to deliver it directly into the subretinal space, on-demand shipment to the clinic and its ability to treat any genetic subtype of disease.

The Phase I trial treated 12 patients with doses of 250,000 or 500,000 fresh cells or 1 million cryopreserved cells. Because of the good safety profile, the Phase IIa trial consisted of 10 patients receiving a 1-million-cell dose.²

The first 22 patients tolerated dose escalation well and had no inflammation or proliferative vitreoretinopathy. There were two serious adverse ocular events unrelated to the drug. Two events leading to vision loss were related to the operation itself or patient selection: a retinal pigment epithelium tear; and persistent subretinal fluid. At 38 weeks post-treatment, BCVA improved an average of 12 letters in the treated eye vs. a 1-letter loss in the untreated eye.

The take home: The trial confirms a biological signal, although the speed of the effect varies among patients. The study results should help improve patient selection and surgical procedure standardization for future trials.

Dr. Dugel disclosed he is a consultant to ReNeuron PLC, the trial’s sponsor.

Predictors of endophthalmitis and IVT anti-VEGF injections

Complications of intravitreal anti-VEGF injections, while infrequent, are confounding and concerning for anyone who does a fair volume of procedures. Tarek Hassan, MD, reported on a retrospective analysis of 154,198 anti-VEGF injections by 15 retina specialists over three years at his practice, Associated Retinal Consultants in Royal Oak, Michigan.³ The goal was to identify predictive factors among the potential benefits of human retinal progenitor cells are delivery directly into the subretinal space, on-demand shipment to the clinic and its ability to treat any genetic subtype of disease.
for endophthalmitis after IVT, evaluating each provider’s protocol. The preinjection protocol the providers followed consisted of povidone iodine (PVI) before and after anesthesia, typically subconjunctival or topical lidocaine.

Fifty-eight cases resulted in endophthalmitis, an incidence of 1:2,659, 41 percent culture positive. Multivariable analysis excluded same-day bilateral injections and cases by physicians with inconsistent injection protocols, resulting in 98,960 unilateral injections. Of those, 40 cases resulted in endophthalmitis, an incidence of 1:2,474, 42.5 percent culture positive.

The take home: The multivariate analysis identified two independent predictors of endophthalmitis: preinjection use of 1% lidocaine jelly, with an 11 times greater odds of endophthalmitis ($p<0.001$); and preinjection use of 0.5% tetracaine with a fourfold risk ($p=0.03$). The study also noted that in vitro studies have shown an increased risk of microbial survival in the eye when lidocaine gel is used before the application of PVI, which may explain this study’s results. The analysis also determined that the use of 5% vs. 10% PVI tended to not improve or worsen endophthalmitis. Study results were published previously in Ophthalmology Retina.

Dr. Hassan disclosed relationships with Alcon, Allergan, Genentech/Roche, Novartis and Regeneron Pharmaceuticals.

Microsecond pulsing laser vs. PDT in CSCR

A study involving patients with chronic central serous chorioretinopathy compared the effectiveness of microsecond pulsing (MSP) laser and photodynamic therapy, giving an edge to the former because of its less-invasive nature and improved patient comfort and cooperation.

Jay Chhablani, MD, of the University of Pittsburgh reported on five studies comparing the two modalities, noting that outcomes were superior with MSP laser than half-fluence or half-dose PDT, but that the differences in improvements between the two groups were not significant. However, in one of the five surveyed studies, the study group reported a statistically significant visual acuity outcome with MSP laser.

The take home: Choroidal neovascularization is a side effect of PDT while MSP laser didn’t show any side effects. Further, while the conventional MSP laser and navigated laser (Navalis) are “laser equivalent,” this study showed the navigated platform required significantly lower fluence with significantly fewer laser impacts than PDT, resulting in a higher rate of complete resolution with a statistically better best-corrected visual acuity. This effect may be attributed to the navigation. Additionally, the navigated platform can be used without a contact lens, “definitely improving the patient comfort and cooperation,” Dr. Chhablani said.

Dr. Chhablani has no disclosures.

WF OCT-A surpasses FA for evaluating nonperfusion

Anti-VEGF therapy for diabetic macular edema has been known to improve the diabetic retinopathy severity scale (DRSS) score when evaluated with color retinal photography and stanch the progression of DR, but the role of anti-VEGF therapy in retinal perfusion, as imaged with fluorescein angiography, remains a matter of conjecture.

(Continued on page 40)
SOME surgical care doesn’t end in a single operation, and the patient needs additional surgery in the postoperative period. Complex cases may be staged. Other cases may require an unexpected return to the operating room, or the patient may have bilateral disease. Here, I’ll explore the correct documentation and coding for these situations.

New procedure

Modifier 58 is an important tool to allow a surgeon to bill for procedures when the patient requires a subsequent procedure following surgery. The definition of modifier 58 is:

Staged or related procedure or service by the same physician or other qualified health care professional during the postoperative period. It may be necessary to indicate that the performance of a procedure or service during the postoperative period was: (a) planned or anticipated (staged); (b) more extensive than the original procedure; or (c) for therapy following a surgical procedure.¹

Some relatively common examples of when to use the 58 modifier include:

- preoperatively planned intravitreal anti-VEGF injections after a pars plana vitrectomy for diabetic retinopathy (staged);
- preoperatively planned silicone oil removal after retinal detachment surgery with silicone oil (staged); and
- laser retinopexy for retinal hole followed by unanticipated retinal detachment and return to the operating room for vitrectomy and retinal detachment repair (more extensive than original procedure).

The term *staged* implies preoperative planning; the preoperative note for the first procedure should indicate the intention to perform a second procedure.

Modifier 58 can be used for procedures performed in the clinic or in the operating room. Payment for the second procedure isn’t reduced; the postoperative clock restarts with the second procedure.

Unplanned return to OR

Modifier 78 is defined as, “Unplanned return to the operating/procedure room by the same physician or other qualified healthcare professional following initial procedure for a related procedure during the postoperative period.”² The first thing you may notice is “return to the operating room.” This is an important difference from modifier 58. Also, there is no preplanning or requirement that the second procedure be “more extensive.”

Modifier 78 examples include:

- after epiretinal membrane peel, a return to the OR for vitrectomy for persistent vitreous hemorrhage; and
- after complex retinal detachment repair, a return to the operating room for vitrectomy and intravitreal antibiotics.

Note that an “operating/procedure room” does not include a physician’s clinic-based procedure room. The Medicare Claims Processing Manual details what constitutes an OR: “An OR for this purpose is defined as a place of service specifically equipped and staffed for the sole purpose of performing procedures.”³ A dedicated laser suite may qualify as a procedure room.

Also note that if the second procedure is more extensive than the first, modifier 58 would apply. Modifier 78 reduces reimbursement and the postoperative clock is not reset; the postop period is calculated from the first procedure.

An unrelated procedure

Modifier 79 is significantly easier to understand than 58 and 78: “An unrelated
Reports on AAo 2019

(Continued from page 38)

Investigators in France and Italy speculated that the variation in the ability to evaluate the role anti-VEGF has in peripheral retinal perfusion may be related to the inability to delineate areas of nonperfusion even with ultra-widefield FA. The researchers conducted a small study to evaluate the correlation between the number of DR lesions on ultra-widefield fundus photographs and nonproliferation on UWF FA. The study compared UWF color photography and UWF FA at baseline and one month after three monthly anti-VEGF injections in 18 eyes of 14 treatment-naive patients. In results previously published in Retina, they reported no reperfusion of the arterioles or venules in or near the nonperfusion areas when the DRSS score improved at least one stage in 11 eyes (61 percent, p<0.0001). After three anti-VEGF injections, FA did not identify reperfusion of vessels despite DRSS improvement on color photographs.

Then the researchers used wide-field optical coherence tomography angiography to evaluate DRSS, finding it improved among at least one stage within three months after three monthly anti-VEGF injections or earlier in eight of 10 eyes, and that new vessels regressed. However, OCTA proved with better precision that no reperfusion occurred, even at the capillary level. These results are pending publication in Ophthalmology. All nonperfusion areas detected on WF-FA were also detected on WF OCTA, and WF OCTA additionally detected some extra areas of nonperfusion that UWF-FA did not.

The take home: DRSS decorrelates from perfusion status after intravitreal anti-VEGF injections, and OCTA is superior to FA for evaluating nonperfusion. On UWF-FA, apparent changes in brightness of the background in areas of nonperfusion could lead to a misdiagnosis of reperfusion when WF OCTA finds no reperfusion. While WF OCTA can image an area larger than the seven standard field 30-degree color fundus photographs, UWF-FA may still be useful for areas WF OCTA can’t reach.

Presenter Ramin Tadayoni, MD, PhD, disclosed relationships with Allergan, Carl Zeiss Meditec and Genetech/Roche.

REFERENCES
2. Dugan P. Subretinal human retinal progenitor cells in retinal pigmentosa: A Phase I/II study. Presented at AAO Subspecialty Day Retina 2019; October 12, 2019; San Francisco, CA.
3. Hassan T. Predictors of postinjection endophthalmitis: A multivariable analysis based on injection protocol and povidone iodine strength. Presented at AAO Subspecialty Day Retina 2019; October 11, 2019; San Francisco, CA.
Recently reported results of the Phase Ib trial of the investigational anti-VEGF agent KSI-301 (Kodiak Sciences) revealed promising data on the safety, efficacy and durability of the drug in patients with previously untreat-ed exudative retinal diseases. Charles C. Wykoff, MD, PhD, reported the first results from the trial last month at Retina 2019 Subspecialty Day at the American Academy of Ophthalmology.

KSI-301 is an intravitreal agent based on a novel platform, called antibody biopoly-mer conjugate, or ABC, that uses a large molecular structure to bind to and inhibit vascular endothelial growth factor.

In a press release reporting the latest Phase Ib results, Kodiak Sciences chief medical officer Victor Perlroth, MD, said the Phase Ib results support the company’s intent to develop KSI-301 to reduce the treatment burden of existing anti-VEGF treatments while improving visual acuity. The findings have enabled Kodiak Sciences to begin enrolling patients in a global, multicenter, randomized Phase II trial called DAZZLE. This trial will eventually enroll at least 368 patients and compare KSI-301 on an individualized dosing regimen of three to five months and aflibercept (Eylea, Regeneron Pharmaceuticals) every eight weeks.

Here, Dr. Wykoff answers questions about the Phase Ib and Phase II trials. Dr. Wykoff, who is also chief clinical editor of Retina Specialist Magazine, is a paid consultant and researcher for Kodiak Sciences.

Q What makes KSI-301 different from other anti-VEGF agents that are available?

A Mechanically, KSI-301 binds to VEGF-A as the other primary anti-VEGF agents. What makes KSI-301 unique is the projected durability of this effect inside of the eye. The antibody biopolymer conjugate platform on which KS-301 is based has been engineered specifically for increased durability. It has two components, a specific anti-VEGF IgG1 antibody with an inert immune effector function that is covalently and stably linked to an intentionally high molecular weight, optically clear phosphorycholine biopolymer.

The concept is to maximize intraocular durability by leveraging size and molar dose. The molecular weight of KSI-301 is 950 kilodaltons vs. 48 kDa for ranibizumab (Lucentis, Roche/Genentech) and 115 kDa for aflibercept. This, combined with a 3.5-fold greater molar dose than aflibercept, leads to an estimated intraocular anti-VEGF effect at three months that has been calculated, based on preclinical studies, to be 1,000-fold greater than aflibercept.

Q What did the preclinical studies reveal about the potential efficacy of KSI-301?

A Preclinical studies have demonstrated three key effects. First, in rabbit models the drug appeared to have a substantial durability benefit compared to previous generation anti-VEGF agents, with an estimated half-life in the rabbit retina to choroid of approximately 10 to 15 days. Second, it demonstrated excellent bioavailability at the target tissues—the retina and choroid. Third, because of its inert Fe domain, when the molecule does diffuse from the eye into systemic circulation, the anticipated primary route of exit from the eye, it clears from systemic circulation rapidly with a systemic half-life of less than one day, much less than bevacizumab (Avastin, Roche/Genentech, 11.5 days).

Q What were the key findings of the Phase Ia trial previously reported?

A That Phase Ia trial involved nine combined with a 3.5-fold greater molar dose compared to aflibercept leads to KSI-301 having an estimated intraocular anti-VEGF effect at three months that has been calculated to be 1,000-fold greater than aflibercept.
patients with diabetic macular edema. They received a single dose of KSI-301, which showed a durability of effect through 12 weeks without any drug-related adverse events.

What was the design of the Phase Ib trial?

A The Phase Ib trial involved 105 patients—35 each with wet age-related macular degeneration, DME and retinal venous occlusive disease. These patients were randomized to 2.5- or 5-mg doses of KSI-301. All patients were given three monthly loading doses and then evaluated monthly, receiving retreatment when prespecified anatomic and/or visual criteria were met.

What are the key findings of the Phase Ib trial that you reported at the AAO?

A This is an ongoing study and the data I presented on behalf of my co-investigators were interim results. In the nAMD group, at 16 weeks, best-corrected visual acuity has improved 5.4 letters on average, and central subfield thickness decreased 72 µm on average. Eighty percent of these patients were able to be extended four months or longer before needing their first retreatment after the three loading doses. Among the DME population, BCVA improved an average of 8.4 lines at 16 weeks and CST improved 140 µm on average. Again a majority, or 82 percent, have so far been able to be extended longer than three months after the last loading dose, and some have been extended to six months before meeting retreatment criteria. Furthermore, all DME patients had either improved or maintained their diabetic retinopathy severity level and none developed a proliferative DR event.

In RVO, BCVA improved 21.3 letters on average at 16 weeks and CST decreased 353 µm (the baseline average CST was approximately 250 µm greater in this group than in the nAMD and DME groups). Among the RVO patients, 56 percent have so far been able to be extended beyond three months after their last loading dose.

Equally important to efficacy and durability, the safety profile of KSI-301 appears excellent, with no intraocular inflammatory events and no drug-related adverse events in 316 total treatments across the Phase I program thus far.

What are the next steps for KSI-301?

A The pivotal Phase II DAZZLE study is enrolling treatment-naïve nAMD patients and randomizing them to either 5-mg KSI-301 or aflibercept. KSI-301 is being dosed every 12, 16 or 20-weeks depending on prespecified disease activity assessments and the primary endpoint is at one year.

Where would KSI-301 potentially fit in the retina specialist’s toolbox for treating exudative retinal disease?

A In real-world wet AMD dosing, multiple reports have documented that patients are not receiving the optimal number of injections based on current standard-of-care agents. The hope is that by developing more durable treatments, we are going to improve real-world outcomes. Decreasing treatment burden is good, but at the same time, because we aren’t dosing frequently enough in the real world, patients aren’t achieving their long-term, maximum potential visual outcomes. More durable agents will deliver a meaningful advantage if they can address this real-world challenge.

REFERENCE

1. Wykoff CC. Extended durability in exudative retinal diseases using the novel intravitreally injected anti-VEGF antibody biopolymer conjugate KSI-301: Results from the Phase 1b study in patients with AMD, DME and RVO. Presented at American Academy of Ophthalmology Subspecialty Day Retina 2019; October 11, 2019; San Francisco, CA.
Experience a new level of clear anatomical precision and diagnostic insight. Visualize OCTA pathology in high-resolution detail at every depth. And accomplish it all with the multimodal versatility of SPECTRALIS.

Experience Heidelberg Image Quality.
Call 800-931-2230 or visit HeidelbergEngineering.com
The **UWF** Gold Standard

The ONLY high resolution, single-capture ultra-widefield image*

- 200° retinal coverage
- high-resolution detail
- patient-friendly, minimal flash
- single-capture, no sweeps

optomap GOLD STANDARD UWF is the only system that covers vortex ampullae in all 4 quadrants in a single-capture.*

UWF imaging in less than ½ second.

Visit Optos at Hawaiian Eye Booth #811
Find out more at www.optos.com
Contact us to put **optomap** in your practice,
call 800-854-3039 or email BDS@optos.com

©2019 Optos. All rights reserved. Optos®, optos® and optomap® are registered trademarks of Optos plc.